\(\int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [788]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 46, antiderivative size = 139 \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 e \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c d g \sqrt {d+e x}}-\frac {2 (e f-d g) \arctan \left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{g^{3/2} \sqrt {c d f-a e g}} \]

[Out]

-2*(-d*g+e*f)*arctan(g^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)^(1/2)/(e*x+d)^(1/2))/g^(3/
2)/(-a*e*g+c*d*f)^(1/2)+2*e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c/d/g/(e*x+d)^(1/2)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {894, 888, 211} \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 e \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d g \sqrt {d+e x}}-\frac {2 (e f-d g) \arctan \left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{g^{3/2} \sqrt {c d f-a e g}} \]

[In]

Int[(d + e*x)^(3/2)/((f + g*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*e*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(c*d*g*Sqrt[d + e*x]) - (2*(e*f - d*g)*ArcTan[(Sqrt[g]*Sqrt[
a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(g^(3/2)*Sqrt[c*d*f - a*e*g])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 888

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 894

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[e^2*(d + e*x)^(m - 2)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^(p + 1)/(c*g*(n + p + 2))), x] - Dist[(b*e*g*(
n + 1) + c*e*f*(p + 1) - c*d*g*(2*n + p + 3))/(c*g*(n + p + 2)), Int[(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x +
c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && Eq
Q[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p - 1, 0] &&  !LtQ[n, -1] && IntegerQ[2*p]

Rubi steps \begin{align*} \text {integral}& = \frac {2 e \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c d g \sqrt {d+e x}}-\frac {\left (2 \left (\frac {1}{2} c d e^2 f-\frac {1}{2} c d^2 e g\right )\right ) \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{c d e g} \\ & = \frac {2 e \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c d g \sqrt {d+e x}}-\frac {\left (2 e^2 (e f-d g)\right ) \text {Subst}\left (\int \frac {1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{g} \\ & = \frac {2 e \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c d g \sqrt {d+e x}}-\frac {2 (e f-d g) \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{g^{3/2} \sqrt {c d f-a e g}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.01 \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 \sqrt {d+e x} \left (e \sqrt {g} \sqrt {c d f-a e g} (a e+c d x)+c d (-e f+d g) \sqrt {a e+c d x} \arctan \left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )\right )}{c d g^{3/2} \sqrt {c d f-a e g} \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[(d + e*x)^(3/2)/((f + g*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*Sqrt[d + e*x]*(e*Sqrt[g]*Sqrt[c*d*f - a*e*g]*(a*e + c*d*x) + c*d*(-(e*f) + d*g)*Sqrt[a*e + c*d*x]*ArcTan[(S
qrt[g]*Sqrt[a*e + c*d*x])/Sqrt[c*d*f - a*e*g]]))/(c*d*g^(3/2)*Sqrt[c*d*f - a*e*g]*Sqrt[(a*e + c*d*x)*(d + e*x)
])

Maple [A] (verified)

Time = 0.55 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.10

method result size
default \(-\frac {2 \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c \,d^{2} g -\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c d e f -e \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\right )}{\sqrt {e x +d}\, \sqrt {c d x +a e}\, d c g \sqrt {\left (a e g -c d f \right ) g}}\) \(153\)

[In]

int((e*x+d)^(3/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*((c*d*x+a*e)*(e*x+d))^(1/2)*(arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c*d^2*g-arctanh(g*(c*d*x+
a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c*d*e*f-e*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2))/(e*x+d)^(1/2)/(c*d*x+
a*e)^(1/2)/d/c/g/((a*e*g-c*d*f)*g)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 511, normalized size of antiderivative = 3.68 \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\left [\frac {{\left (c d^{2} e f - c d^{3} g + {\left (c d e^{2} f - c d^{2} e g\right )} x\right )} \sqrt {-c d f g + a e g^{2}} \log \left (-\frac {c d e g x^{2} - c d^{2} f + 2 \, a d e g - {\left (c d e f - {\left (c d^{2} + 2 \, a e^{2}\right )} g\right )} x - 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {-c d f g + a e g^{2}} \sqrt {e x + d}}{e g x^{2} + d f + {\left (e f + d g\right )} x}\right ) + 2 \, {\left (c d e f g - a e^{2} g^{2}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{c^{2} d^{3} f g^{2} - a c d^{2} e g^{3} + {\left (c^{2} d^{2} e f g^{2} - a c d e^{2} g^{3}\right )} x}, \frac {2 \, {\left ({\left (c d^{2} e f - c d^{3} g + {\left (c d e^{2} f - c d^{2} e g\right )} x\right )} \sqrt {c d f g - a e g^{2}} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {c d f g - a e g^{2}} \sqrt {e x + d}}{c d e g x^{2} + a d e g + {\left (c d^{2} + a e^{2}\right )} g x}\right ) + {\left (c d e f g - a e^{2} g^{2}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}\right )}}{c^{2} d^{3} f g^{2} - a c d^{2} e g^{3} + {\left (c^{2} d^{2} e f g^{2} - a c d e^{2} g^{3}\right )} x}\right ] \]

[In]

integrate((e*x+d)^(3/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[((c*d^2*e*f - c*d^3*g + (c*d*e^2*f - c*d^2*e*g)*x)*sqrt(-c*d*f*g + a*e*g^2)*log(-(c*d*e*g*x^2 - c*d^2*f + 2*a
*d*e*g - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x - 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*f*g + a*e
*g^2)*sqrt(e*x + d))/(e*g*x^2 + d*f + (e*f + d*g)*x)) + 2*(c*d*e*f*g - a*e^2*g^2)*sqrt(c*d*e*x^2 + a*d*e + (c*
d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^2*d^3*f*g^2 - a*c*d^2*e*g^3 + (c^2*d^2*e*f*g^2 - a*c*d*e^2*g^3)*x), 2*((c*d^
2*e*f - c*d^3*g + (c*d*e^2*f - c*d^2*e*g)*x)*sqrt(c*d*f*g - a*e*g^2)*arctan(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 +
a*e^2)*x)*sqrt(c*d*f*g - a*e*g^2)*sqrt(e*x + d)/(c*d*e*g*x^2 + a*d*e*g + (c*d^2 + a*e^2)*g*x)) + (c*d*e*f*g -
a*e^2*g^2)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^2*d^3*f*g^2 - a*c*d^2*e*g^3 + (c^2*d^
2*e*f*g^2 - a*c*d*e^2*g^3)*x)]

Sympy [F]

\[ \int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {\left (d + e x\right )^{\frac {3}{2}}}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \left (f + g x\right )}\, dx \]

[In]

integrate((e*x+d)**(3/2)/(g*x+f)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral((d + e*x)**(3/2)/(sqrt((d + e*x)*(a*e + c*d*x))*(f + g*x)), x)

Maxima [F]

\[ \int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int { \frac {{\left (e x + d\right )}^{\frac {3}{2}}}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (g x + f\right )}} \,d x } \]

[In]

integrate((e*x+d)^(3/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(3/2)/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(g*x + f)), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 284 vs. \(2 (123) = 246\).

Time = 0.41 (sec) , antiderivative size = 284, normalized size of antiderivative = 2.04 \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 \, {\left (\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} e}{g {\left | e \right |}} - \frac {{\left (c d e^{3} f - c d^{2} e^{2} g\right )} \arctan \left (\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right )}{\sqrt {c d f g - a e g^{2}} e g {\left | e \right |}}\right )}}{c d} + \frac {2 \, {\left (c d e^{2} f \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right ) - c d^{2} e g \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right ) - \sqrt {-c d^{2} e + a e^{3}} \sqrt {c d f g - a e g^{2}} e\right )}}{\sqrt {c d f g - a e g^{2}} c d g {\left | e \right |}} \]

[In]

integrate((e*x+d)^(3/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

2*(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*e/(g*abs(e)) - (c*d*e^3*f - c*d^2*e^2*g)*arctan(sqrt((e*x + d)*c*d*
e - c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e))/(sqrt(c*d*f*g - a*e*g^2)*e*g*abs(e)))/(c*d) + 2*(c*d*e^2*f
*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) - c*d^2*e*g*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqr
t(c*d*f*g - a*e*g^2)*e)) - sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*e)/(sqrt(c*d*f*g - a*e*g^2)*c*d*g*ab
s(e))

Mupad [F(-1)]

Timed out. \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {{\left (d+e\,x\right )}^{3/2}}{\left (f+g\,x\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \]

[In]

int((d + e*x)^(3/2)/((f + g*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)

[Out]

int((d + e*x)^(3/2)/((f + g*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)), x)